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ABSTRACT
Session-based recommender system refers to a specific type of rec-
ommender system that focuses more on the transactional structure
of each session rather than the user and item interactions [16]. It is
stated that the users’ interactions are mostly homogeneous in the
same sessions, while being heterogeneous across different sessions
[5]. Therefore, it is essential to extract the interest dynamics of
users within each session. The 2019 ACM Recsys Challenge [10]
aims to apply session-based recommender systems to the domain
of travel metasearch. The goal is to predict which hotels are clicked
in the search results based on the context of each session. In this
paper, we propose our approach to effectively tackle the challenge.
It involves an ensemble of three models, LightGBM, XGBoost, and
a Neural Network based on DeepFM [6] that is capable of handling
sequential features. Our team, RosettaAI, won the 4th place in this
challenge, scoring 0.679933 on the final leaderboard. The source
code is available online 1.
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1 INTRODUCTION
With the ever-growing number of available accommodations on-
line, successfully matching hotels with the user’s interest becomes
gradually important. Since the majority of users visiting these sites
are not logged-in, in addition to considering the users’ past be-
haviors, an effectual recommender system must be able to model
the transition of user interests in the sessions. Therefore, to tackle
the challenge, we need to build a session-based and context-aware
recommender system tailored for hotel recommendation.

Several studies [14] [7] have attempted to solve this task with
Collaborative Filtering (CF) [13]. Essentially, this algorithm con-
structs a user-item matrix based on the past interactions of all users.
Predictions are made by computing the similarity between items or
users. Although CF successfully extracts the latent patterns behind
user and item interactions, it suffers from twomain drawbacks. First,
it ignores the contextual feature of each session. Such information
is critical for modeling the dynamics of user interest throughout the
session. In addition, the performance of CF decreases significantly
when the sparsity of the user-item matrix is high. This holds in this
challenge. The user-item matrix is highly sparse due to the large
portion of non-logged-in users.

Our team leveraged an ensemble of three different models, Neu-
ral Network, LightGBM, and XGBoost to solve the challenge. We
utilized the Neural Network’s expressive ability in modeling sequen-
tial data with Bi-directional Gated Recurrent Units (Bi-GRUs) [3],
while using the other two models to learn from structural data effi-
ciently. By ensembling these three models, we can take advantage
of the strengths of each of them.

In this study, we discovered that although unable to process
sequential features, LightGBM and XGBoost still outperform Neu-
ral Network significantly thanks to their efficacy in extracting in-
formation from tabular data. Furthermore, session-based features,
especially those related to the immediate last interaction, are found
to be the most important features in model’s performance.

The rest of the paper is organized as follows. First, the frame-
work of the challenge will be described. Then, we will explain our
approach to the challenge, including the loss function, the models,
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the ensemble structure, and the feature engineering. Finally, the
experiments and results will be illustrated.

2 CHALLENGE TASK
2.1 Problem Definition
In the 2019 ACM Recsys Challenge, trivago provided a dataset of
browse logs on the Trivago website, which consists of consecutive
actions of users and referenced items (e.g. hotel). There are various
action types, including interaction with item image, change of sort
order, filter selection, search for destination, clickout item, and etc.
The goal of the competition is to predict the exact clicked item
among at most 25 candidates in the rows associatedwith the clickout
item action, given the information of series of actions right before
the clickout item action occurs. The evaluation metric is Mean
Reciprocal Rank (MRR), defined as follows [12]:

MRR =
1
|Q |

|Q |∑
i=0

1
ranki

(1)

where Q denotes the total number of samples, and ranki denotes
the rank of the first correct answer for sample i.

2.2 Data Description
As stated in the Challenge Dataset webpage, the provided dataset
contains training data, test data, and metadata of accommodations
(items). In particular, there are 730803 users, 400277 items, and
910683 independent sessions, each of which is composed of series
of actions involving one user and several items. There may exist
one or more clickout item actions in a single session. In a clickout
item action, all possible accommodations and their prices are listed
in the same order as they were displayed to the user, also known
as the impressions list and price list.

3 APPROACH
In this section, we will describe our approach to the challenge.
We first define the loss function as well as the data preprocessing
pipelines. Then, two different types of models we implemented,
Neural Network, and Gradient Boosting Machine are illustrated.
Lastly, we demonstrates the important features we engineered.

3.1 Loss Function
Inspired by this study [4], we adopted binary cross-entropy (BCE)
loss as our loss function. Each of the item in the impression is
broken down into individual samples. The labels associated with
the clicked item are 1, while the others being 0. Mathematically,
the loss function is defined as follows:

L =
N∑
i=0

yi loд(ŷi ) + (1 − yi )loд((1 − ŷi )) (2)

where N denotes the total number of broken down samples, yi ∈
[0,1] denotes the ground truth, and ŷi denotes the output of the
model, where {ŷi ∈ R; 0 ≤ ŷi ≤ 1}.

3.2 Preprocessing
The preprocessing procedure involves three steps, removing invalid
clickout item rows, breaking down impression, and encoding cate-
gorical feature. In the first step, a clickout item row is considered
invalid if its reference value does not present in its impression. Such
rows containing no positive ground truth are removed from the
training and validation sets. Then, as aforementioned, the impres-
sion of each row is broken down to Ii samples, where Ii is the
number of items in the i-th impression. Categorical features are
encoded from 0 to Cj − 1, where Cj denotes the number of unique
value for the j-th categorical feature. In addition to saving memory,
such encoding was chosen over one-hot encoding for later feeding
the encoded features into embedding layers efficiently.

3.3 Neural Network
Motivated by DeepFM [6], we propose a Neural Network that is
capable of modeling the second-order feature interaction efficiently,
while taking into account the temporal dynamics of user-item inter-
actions at the same time. As depicted in Figure 1, the input features
can be divided into three parts, continuous features, categorical
features, and sequential categorical features. The following sub
sections will illustrate the detail of each of them with the notation
below.

• D: 1-dimensional continuous features. Di denotes the i-th
continuous feature.

• E: 1-dimensional encoded categorical features. Ei denotes
the i-th categorical feature.

• F: 2-dimensional encoded sequential categorical features. Fi
denotes the i-th sequential categorical feature.

Figure 1: The model architecture of the proposed Neural
Network. The inputs constitutes of three parts, continuous
features, categorical features, and sequential categorical fea-
tures. All layers are densely connected.
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3.3.1 Continuous Features. Continuous features must be properly
normalized for Neural Networks to learn well. Two different nor-
malization techniques were applied to D, uniform normalization to
[0, 1] and the Rank Gauss transformation [15]. The latter one ranks
the continuous values for each Di , uniformly maps the ranking
onto [0, 1], and transforms this with the inverse error function. The
error function, which is also known as the Gauss error function, is
mathematically defined as [1]:

er f (x) =

∫ x

0
e−t

2
dt (3)

The two methods work the best compared with standardization.
Thus, both of them are used for normalization.

3.3.2 Categorical Features & Sequential Categorical Features. Both
E and F are embedded to obtain a u-dimensional representation for
each feature, where u ∈ N . Notably, features under the same ID
space share the same embedding weights. For instance, there exists
a single embedding of item IDs that distinct features from E and F
may contain (item IDs of the impression and the IDs of the items
that the user had interacted in the current session).

To model the dynamics of user interest throughout the session,
the embeddings of item IDs and actions are concatenated, and
processed by a Bi-directional GRU. The outputs of GRU for each
time step are then aggregated with max pooling. Formally, it can
be described as:

G = д([Fitem , Faction ],θ )

V =maxpool(G)

where θ denotes the parameters of Bi-GRU, g denotes the Bi-GRU
transformation, G denotes the output of Bi-GRU, and V denotes the
aggregated vector. Similarly, the other features in F boils down to
u-dimensional vectors.

3.3.3 Feature Interaction. As stated in [6], feature interaction al-
lows the model to discover the implicit meaning behind user’s
behavior. Therefore, a proper feature interaction mechanism is
important for improving the performance of the model. DeepFM
computes the Hadamard products of the embedding vectors of each
pair of features, and aggregating them with weight-1 connections.
Essentially, it is equivalent to summing the element-wise products
of the embeddings. This can be achieved efficiently by computing
difference between the square of sum and the sum of square of
these embedding vectors. Let Vi ,Vj ,Vk ∈ Ru denotes the embed-
ding vectors for feature i, j, and k, we can derive the following:

(Vi +Vj +Vk )
2 = V 2

i +V
2
j +V

2
k + 2(Vi ◦Vj +Vj ◦Vk +Vi ◦Vk )

(Vi ◦Vj +Vj ◦Vk +Vi ◦Vk ) =
1
2
((Vi +Vj +Vk )

2 − (V 2
i +V

2
j +V

2
k ))

where ◦ denotes the Hadamard product operation.
Hence, it is not necessary to explicitly compute the Hadamard

products for each pair of embedding vectors; instead, we simply
compute the two terms on the right-hand-side in the above equa-
tion.

3.4 Gradient Boosting Machine
Tree-based models usually perform the best in structured data, es-
pecially for gradient boosting machines. These models have been
dominant in Kaggle competitions involving tabular data. We se-
lected LightGBM [8] and XGBoost [2] to increase model diversity
for ensemble. These two models takes all the features fed to the
Neural Network, except for the sequential categorical features, with
additional hand-crafted features. It turns out that both of these two
models outperform the Neural Network by a large margin. Details
of the experiment results will be provided in the latter section.

3.5 Ensemble
Our ensemble method is an weighted average of the predictions for
each of the three models discussed above. Specifically, the predic-
tions are blended with the following ratio:

NeuralNetwork : LiдhtGBM : XGBoost = 1 : 7 : 4

Empirically, this ratio generates the best results.

3.6 Feature Engineering
We conducted feature engineering with the aim of capturing all
different aspects. The different set of features are described by the
following subsections:

3.6.1 Impression-based features. There are some obvious informa-
tion of the impression list including price, city, platform, rating, and
star of those items on impression list. In addition, we engineered
some hidden messages such as the rank of each item’s price, the
position of the item on the impression list, and the length of the
impression list.

3.6.2 Session-based features.

• Time difference feature: The time difference between current
and the last step action.

• Item time difference: The time difference between when an
item was last interacted and when the clickout item action
took place.

• Last interacted item impression index: The position of the
last interacted item in the current impression list.

• Equal last interacted item: Whether this item in impression
list equal to the last interacted item in the current session.

• Local count feature: For each section, we compute the count
of different types of interaction for each item in the impres-
sion list.

• Last interact index: The impression index of the the last
interacted item in the current session.

• Predicted next impression index: Tomodel the eyemovement
of the user on the website, we leveraged the position of
the last interacted item and the second last interacted item
on the current impression list. Specifically, this feature is
computed as follows: Predicted next impression index
= last impression index + ( last impression index -
second last impression index ) , where the second term
calculates the movement of the last interaction.

3.6.3 Aggregation features.
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• Target encoding: To better approximate the priors, we ag-
gregate the mean value for some of the categorical features,
such as price rank and impression index.

• City price bin: Considering the different price indices of
different cities, we categories prices into bins based on city.

4 EXPERIMENTS
4.1 Experimental Settings
To prevent the models from seeing the future clickout events, which
might lead to label leakage, we adopted the leave-one-out evaluation
as our validation strategy. In specific, 50000 sessions were randomly
selected, only the last clickout events of which are used as validation
data. The validation scores shown in this paper refer to the models’
performance on this validation set.

4.2 Training Process
The Neural Network was implemented in PyTorch [11]. Adam
[9] was used for optimizing the Neural Network with learning
rate=0.001 and weight decay=0. To boost the training speed, the
batch size was set to 1024. We train the Neural Network only for 1
epoch on a single Nvidia Tesla M60 GPU. In our experiments, the
Neural Network usually starts to overfit when trained beyond 1
epoch. Any regularization technique other than batch normaliza-
tion, such as dropout and l2-regularization, only result in poorer
performance. All the weights are randomly initialized, following
the default setting of PyTorch.

As for LightGBM and XGBoost, the learning rate was set to 0.01
and 0.02, respectively. The other training parameters are in general
the same. Their maximum number of boosting rounds and early
stopping rounds are set to 50000 and 500. BCE loss is used as a
proxy for their early stopping criteria since computing MRR for
every round during training is computationally expensive. Their
base learners are gradient boosting decision trees, which perform
the best empirically. They are all trained on 48 CPU cores.

4.3 Experimental Results
The computation time and performance of the three models are
evaluated. As demonstrated in Table 1, the Neural Network takes
the least time to train as it converge the fastest. LightGBM requires
the longest training time since it stopped at its maximum boosting
rounds, while XGBoost stopped at less than 20000 rounds. The long
training time for LightGBM also explains its long inference time.
The longer the model is trained, the more sophisticated the model;
thus, taking more time while performing prediction.

Comparing the three single models, tree-based models outper-
form the Neural Network by a large margin, as shown in Table 2,
even though sequential features are not fed into these models. We
hypothesize that this is because tree-based models are efficient in
extracting information from tabular data. In addition, such data
does not exist evident hierarchical structure compared with image
or text data, where Neural Networks dominates with their strong
hierarchical representation abilities. Among these three, LightGBM
performs the best in local validation. However, the best LightGBM
prediction was not submitted since it was produced almost at the
end of the challenge when we do not have many submission op-
portunities. That prediction result was only used for ensemble. By

NN LightGBM XGBoost

Training Time 6 14 10
Inference Time 0.3 1.2 1

Table 1: Computation time comparison. (Hours)

NN LightGBM XGBoost Ensemble

Validation 0.675206 0.685787 0.684521 N/A
Leaderboard 0.672117 N/A 0.681128 0.682128

Table 2: Performance comparison. (MRR)

Feature Name Importance Score

Equal Last Interacted Item 8.9 × 107
Item Time Difference 3.9 × 107
Impression Index 3.2 × 107
Last Interact Index 2.3 × 107
Time Difference 1.1 × 107

Table 3: Top 5 important features for LightGBM

blending the prediction of three models with the ratio mentioned
previously, the ensemble achieved the best MRR on the public
Leaderboard.

Table 3 shows the top 5 important features generated by our best
LightGBM model. It seems that session-based features related to
the immediate last action before the clickout item actions play the
most important roles in improving our modes. For instance, Equal
Last Interacted Item indicates if an item in the impression list is
the same as the immediate last interacted item, while Item Time
Difference refers to the time difference between when an item was
last interacted and when the clickout item action took place.

5 CONCLUSION
In this paper, we described our approach to the 2019 ACM RecSys
Challenge. The challenge was formulated as a binary classification
problem where BCE loss was adopted to optimize the models. An
ensemble of three models were presented to tackle the challenge,
including Neural Network, LightGBM and XGBoost. We discovered
that tree-based models are more effective in extracting information
from tabular data than Neural Networks in this challenge. More-
over, among all the features, session-based features associated with
the immediate last interaction are the most critical in terms of im-
proving the evaluation metric. In the end, our team won the fourth
place on the final leaderboard of this challenge, suggesting that our
proposed ensemble model is effective in solving such task.
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